
Highly
on�gurable operating systems : the VVM approa
hIan Piumarta1;2, Bertil Folliot1;2, Lionel Seinturier2, Carine Baillarguet11INRIA Ro
quen
ourt, B.P. 105, 78153 Le Chesnay Cedex, Fran
e2Universit�e Paris VI, Lab. LIP6, 4 pl. Jussieu, 75252 Paris Cedex 05, Fran
eIan.Piumarta�inria.fr, Bertil.Folliot�lip6.fr, Lionel.Seinturier�lip6.frCarine.Baillarguet�inria.fr1 Introdu
tionAppli
ations, espe
ially distributed ones, have be
ome more and more
omplex during the lastde
ade. One
ause of this is the in
reasing number and
omplexity of system
omponents | for
ommuni
ation, fault toleran
e, mobility, repli
ation, and so on. At the same time, developmentenvironments (operating systems, software
ommuni
ation busses and programming languages)are
hanging rapidly and pla
e stringent requirements on developers. Our response to this
hal-lenge is a multi-language, hardware-independent exe
ution platform
alled the virtual virtual ma-
hine (VVM) [FPR98℄. The essential
hara
teristi
 of this platform is dynami
 extensibility andre
on�gurability to suit the needs of ea
h appli
ation.After a brief des
ription of the VVM proje
t in Se
tion 2, this position paper provides someinsights into the
apabilities of the VVM in terms of its re
e
tive features (Se
tion 3) and itsappli
ation to the problems
ommuni
ations busses (Se
tion 4), re
on�gurable/fault-tolerant em-bedded systems (Se
tion 5), and interoperability of mobile
ode (Se
tion 6). Finally, Se
tion 7
on
ludes.2 The VVM proje
tThe VVM is an environment dedi
ated to dynami
 extensibility and re
on�gurability | the abilityto spe
ialise every level of both system and exe
ution environments to spe
i�
 appli
ation needs.This spe
ialisation
an be at an arbitrarily �ne grain, and is reversible. The prin
iples are touse language te
hniques su
h as virtual ma
hines, re
e
tion and dynami

ode generation in thekernel of the system | and to a
hieve a mu
h tighter integration with the appli
ation than inrelated solutions su
h as Synthetix [PW93℄, Spin [BSP+95℄ or Apertos [Yok92℄. Our obje
tives aretherfore to maximise extensibility and minimise \kernel" size; to push the philosophy of Exokernel[EKO97℄ (and mi
ro-kernels in general) to the limit.We propose a single environment supporting target appli
ations (or appli
ation
omponents)built in almost any \byte
oded" programming (or s
ripting) language. We make no assumptionsabout the origin of these appli
ations. Appli
ations are \typed" with an appropriate exe
utionmodel. Ea
h appli
ation type
orresponds to a virtual ma
hine des
ription
alled a VMlet. VMletsare loaded on demand, whenever a new appli
ation type is en
ountered.We use the term \virtual ma
hine" in both the language and system sense. Agents or appletsthat travel over a network will almost
ertainly be written in a byte
oded language; in this
asethe appropriate VMlet will de�ne an exe
ution engine suitable for interpreting the appli
ationitself | a virtual ma
hine in the language sense. Software
ommuni
ation busses and othermiddleware
omponents will de�ne system servi
es possibly destined for use with fully
ompiled(native) appli
ations | their VMlet de�nes new virtual ma
hine fun
tionality in the system sense,extending the abstra
tion of the physi
al resour
es imposed by the native operating system. Insome
ases (embedded systems, for example) it is appropriate for the VMlet to de�ne both theexe
ution engine and the system abstra
tions that enable appli
ations to
oexist and a

ess lo
alresour
es.
49

minimal resource access:
memory, IO CPU state

myPush {
 ...}
getList {
 ...}
def-insn myPush
def-prim getList
def-exec threaded
def-mem java
myFileStruct {
 ...}
def-file myFileStruct
use-mod virtual-mem
use-mod thisFS
use-mod persistance
use-mod real-time
use-device ethXX
use-mod ipcForMe

myVMlet

myAppli
type: myVMlet

main() {
 ...}

VVM dedicated to a specific system environment

interpreter

optimiser

code generator

threaded exec module

java memory module

virtual memory module

ext2fs module

persistance module

real-time sched module

etherlink driver module

IPv4 module
desc mySocketCreate {
 ...}
res mySocketKill(desc) {
 ...}

...

VVM dedicated to a specific execution environment

native code

Figure 1: An example of the VVM ar
hite
ture applied to exe
ution of byte
ode ap-pli
ations. Ea
h appli
ation (or appli
ation sub-
omponent) is \typed" with a VMletspe
i�
ation, whi
h de�nes the
hara
teristi
s of the exe
ution environment requiredby the appli
ation. The VMlet extends the exe
ution environment with the spe
i�
requirements of the appli
ation. These extensions
an equally
on
ern with language(virtual instru
tion set, appli
ation memory model, et
.) and system (host operatingsystem interfa
e, �lesystem and network servi
es, et
.)
omponents. Other uses ofthe VMM (for s
ripting in middleware appli
ations, for example) would use far fewermodules.2.1 Ar
hite
ture of the VVMThe VMM ar
hite
ture is modular, with individual reusable
omponents des
ribed by VMlets.In pra
ti
e, many system and exe
ution
omponents are \generi
", and
an be represented by a(possibly parameterised) VMlet. A usable system environment or exe
ution engine is typi
ally
omposed of various prede�ned VMlets (appropriately parameterised) plus any spe
i�
 inter
on-ne
ting \glue".Figure 1 illustrates the VVM ar
hite
ture.3 Re
e
tion and aspe
t-orientationVMlets are imperative (not de
larative) spe
i�
ations that are exe
uted when the VMlet is loaded.One side-e�e
t of their exe
ution is to modify or extend the VVM's fun
tionality.1 VMlets areen
oded as
ompa
t byte
oded programs and hen
e any VVM will in
lude at least one byte
odeexe
ution engine, for interpreting the VMlets themselves.Exe
uting a VMlet when it is loaded permits a large degree of both
exibility and se
urity.The VMlet
an introspe
t on and reason about the environment into whi
h it is loaded, modifyingits behaviour (and
onsequently the
hanges it makes to the VVM's fun
tionality) appropriately.Conversely, by restri
ting visibility of the lo
al environment and a

ess to the inter
ession me
h-1Compare this with exe
uting a PostS
ript program, whose side-e�e
t is to leave visible strokes in a framebu�er.50

anisms VVM fun
tionality, a VVM
an ensure that VMlets do not
ompromise lo
al safety orse
urity
on
erns when loaded.Besides providing a \meta" representation of a given system, re
e
tion is also supposed toa
hieve separation of
on
erns for appli
ations where many fun
tionalities need to be simultane-ously managed. The diÆ
ulty of this task stems mainly from the fa
t that most of the time the
odeimplementing these fun
tionalities ends up being tangled; for example, in a given software
ompo-nent some pie
e of
ode for mobility may be intertwined with some other pie
e of
ode dealing withrepli
ation. Distributed appli
ations in parti
ular, where the number of separate fun
tionalitiestends to be high, are therefore diÆ
ult to develop and maintain. One of the
urrent trends istowards
lear separation of
on
erns using aspe
t-oriented programming (AOP) [KLM+97℄. This�eld, pioneered by languages su
h as D and Aspe
tJ [LK97℄, permits ea
h
on
ern (aspe
t) to beta
kled separately | leaving programmers to fo
us their attention on one problem at a time.Of
ourse, the fa
t that aspe
ts may interfere (for example, the anomaly between syn
hroniza-tion and inheritan
e [MY93℄, or the non orthogonality between repli
ation and migration whenboth are
onsidered simultaneously) remains one of the major diÆ
ulties of AOP that is still beinginvestigated by the resear
h
ommunity. The goal of the proje
t presented in this paper is not tota
kle this problem, but rather to show that the VVM
an be used as a \weaver
onstru
tor" forany given weaving model (Aspe
tJ-like, D-like, et
.). The natural way to do this is to
onsider ea
hweaving model as implementedd by a VMlet. To a
hieve this goal, we believe that the VVM hastwo main advantages. First, the re
e
tive features of the VVM allow any (abstra
t) instru
tionto be modifed \under the feet" of the running VM. For example, data a

essors/modi�ers
an berede�ned seamlessly when repli
ation is to be introdu
ed. Se
ond, weaving is a highly dynami
pro
ess that re
on�gures a base level program with some new aspe
ts. This re
on�guration pro
essis pre
isely that VMlets are designed to do. The parameters of this re
on�guration, i.e. where andwhen aspets are to be applied (the de�nition of so
alled \
ross
ut a
tions" in Aspe
tJ),
an bede�ned by spe
ialising this VMlet. Based on these prin
iples, we are in the pro
ess of evaluatingan implemention of su
h an aspe
t-oriented programming style using an early prototype of theVVM (the RVM [RVM℄).4 Communi
ation bussesThe support of heterogeneous devi
es and
ommuni
ations proto
ols has
learly been identi�edas a need for
urrent appli
ations. Existing mi
ro-kernels (Flux, L4, Exokernel, et
.) and virtualma
hines (JVM, et
.) provide a partial solution to this problem. Nevertheless, ea
h individualsolution does not always s
ale well to all existing devi
es. Instead of being bound to only one\operating mode", the VVM provides a way to design several VMs, ea
h of them tailored to theneeds of a parti
ular devi
e. The VMlet spe
i�
ation language is then the foundation on whi
hthe
ommuni
ation proto
ols between these VMs
an be implemented.Even within existing standards, re
ent work on middleware systems has identi�ed real needs forre
on�gurability to support mobility of obje
ts and/or
ode, dynami
ally-
on�gurable or \generi
"proxies, spe
ialisable
onne
tors for repli
ation or se
urity, and so on. Re
e
tivity has been iden-ti�ed as one of the most promising approa
hes to solving these problems [BC00℄, but
urrentsolutions are either too stati
 (metaobje
t proto
ols, aspe
t weaving, or other
ompile-time re
e
-tion) or too ineÆ
ient (pla
ing interpreted s
ripts in the
ommuni
ations path, for example).The VVM provides the me
hanisms to optimise both dynami
ity and exe
ution. VMlets are
ompiled to native
ode for exe
ution, and
an also be given a

ess to the
ode generator toinstantiate arbitrary behaviour as native
ode. S
ripts represented as VMlets or otherwise passedto the native
ode generator have all the bene�ts of dynami
ity o�ered by interpreted solutions,but run with the same eÆ
ien
y as would fully-
ompiled stati

ode.A VVM-based solution does not require the use of a byte
oded appli
ation language or the useof expli
it s
ripts. The VVM
an be present as an appli
ation library, used to instantiate nativeimplementations of
ommuni
ations
omponents (loading and running VMlet spe
i�
ations underthe
ontrol of the appli
ation) that are
onne
ted to other (stati
) parts of a traditional middleware51

bus, su
h as CORBA.5 Embedded systems, re
on�gurability and fault-toleran
eS
ienti�
 satellites represent an extreme
ase of embedded system, posing severe problems ofre
on�gurability for both fault-toleran
e and
ommuni
ation optimisation. High-energy protonsregularly damage system
omponents (regions of main memory in parti
ular) requiring the systemto re
on�gure itself to use only the remaining undamaged resour
es. Limited
ommuni
ationbandwidths and availability (typi
ally several brief periods of
onta
t per day, limited to a totalof 140kbits of information in the uplink) impose a highly
ompa
t format for re
on�guration
ommands.In
ollaboration with the Observatory of Meudon, we are
reating a limited version of theVMM for use aboard the Corot satellite [AB99℄ to be laun
hed in 2005. In addition to the usualneeds of re
on�guration for fault-toleran
e, this satellite is unusual in that mu
h of the s
ienti�
data pro
essing will be performed aboard before transmitting the results to the ground station.Sin
e physi
al resour
es are severely limited, the on-board systems operate in many di�erent
on�gurations depending on the mission phase (data
apture, pro
essing, telemetry, and so on).Capture and pro
essing algorithms are based on theoreti
al models, but must be adaptable basedon
onditions a
tually experien
ed during the
ight | in
luding the uploading of entirely newalgorithms.The Corot VVM [FCP+00℄ resembles a s
ripting engine,
ontrolling the disposition and
on-ne
tivity of system resour
es at a given instant. Re
e
tive fa
ilities permit the VVM to modifythe operational parameters of the satellite systems, and to repla
e parts of itself or the imagepro
essing software as required. New
on�gurations are determined using ground equipment, op-timised to identify only those \
omponents" that require modi�
ation, and then transmitted tothe satellite as s
ripts for exe
ution by the VVM. Being able to optimise the behaviour of theVVM-based
on�guration engine as easily as the pro
essing software is essential for minimisingthe amount of data uploaded.6 Mobility and interoperabilityWe have
ompleted an early prototype of the VVM,
alled the re
exive virtual ma
hine (RVM) [RVM℄,whi
h is
apable of modifying its own instru
tion and primitive sets at runtime (Figure 2).To demonstrate its e�e
tiveness we have implemented VMlets for both the PLAN [HKM+98℄and ANTS [WGT98℄ a
tive networks. When loaded these VMlets extend the RVM exe
utionenvironment with pa
ket en
oding/de
oding fa
ilities, extend the RVM language with eÆ
ientrouting table data stru
tures, extend the RVM byte
ode set with new byte
odes that will appearin a
tive pa
ket headers, and then rede�ne the intrinsi
 RVM exe
ution engine to
onsider networkpa
kets as \exe
utable obje
ts". The
orresponding VMlets are about two orders of magnitudesmaller then the original implementations of these a
tive networks (
ounted as bytes of sour
e
ode).We are
urrently extending these VMlets to
oexist, in order to experiment with \bridges"between two di�erent a
tive networks. Another topi
 of interest is \a
tive a
tive networks",where \
ontrol" pa
kets
ontain VMlets whi
h are passed dire
tly to the RVM for exe
ution |possibly fundamentally altering its underlying behaviour. This makes possible a \meta" a
tivenetwork, where new a
tive network models (in
luding those of PLAN and ANTS)
an be loadedand unloaded as needed.7 Con
lusionThe Virtual Virtual Ma
hine is an exe
ution environment whi
h is dynami
ally extensible andtailored to appli
ation needs. The re
e
tive features of the VVM provide me
hanisms for intro-52

MVR

insns prims

eval

define-instruction
define-primitive

intrinsic

dynamic

syntax-table

impl-objs*

read-eval-print

r/w

r/wr/w

intrinsic dynamicmyVeryOwnProgram.rvm

push-active-context

global-env

Figure 2: The Re
exive Virtual Ma
hine implements a Lisp-like intera
tive language.A high degree of introspe
tion and inter
ession permits the small set of intrinsi
 in-stru
tions and primitives to be extended dynami
ally by the appli
ation, whi
h
analso modify the syntax and basi
 exe
ution me
hanisms to suit a parti
ular domain.There is no separate spe
i�
ation language: the de�ne-primitive and de�ne-instru
tionprimitives take appli
ation-level fun
tions as spe
i�
ations for new fun
tionality. TheRVM
an transform itself, for example, into an a
tive network router at \boot" time.Low-level IO
an be provided by a mi
ro-kernel or (for example) a spe
ialised kernelbuilt using OSkit, allowing RVM-based appli
ations to be fully \standalone".spe
tion on the
urrent exe
ution environment, and inter
ession to modify it. A
tive spe
i�
ationsmaximise the potential of reasoning with the results of introspe
tion before inter
eding. Withinthe
ontext of interpreted languages, byte
odes
an be added or rede�ned dynami
ally withoutstopping the appli
ations. Adaptive middleware is easily supported by the ability to load di�erent
ommuni
ations \personalities" on top of a
ommon substrate.A very limited prototype,
alled the RVM, has been implemented and used to dynami
ally
onstru
t various system and language fa
ilities, in
luding a
tive networks. We are in the pro
essof evaluating the RVM's potential as a vehi
le for dynami
 aspe
t-oriented programming.Referen
es[AB99℄ M. Auvergne, A. Baglin, et al. Du
oeur des �etoiles aux plan�etes habitables, les enjeux deCorot. Journal des Astronomes Fran�
ais, No. 60, pp. 27{34, 1999.[BSP+95℄ B. N. Bershad, S. Savage, P. Pardyak, and al, Extensibility, safety and performan
e inthe SPIN operating system, SOSP, 1995.[BC00℄ G. Blair and R. Campbell. Pro
. Re
e
tive Middleware 2000. April 2000. http://www.
omp.lan
s.a
.uk/
omputing/RM2000/ 53

[EKO97℄ D. R. Engler, M. F. Kaashoek, J. O'Toole Jr, Exokernel: an operating system ar
hite
turefor appli
ation level resour
e management, Pro
eedings of the 6th workshop on Hot Topi
s inOperating Systems, May 1997.[FCP+00℄ B. Folliot, D. Cailliau, I. Piumarta and R. Bellenger. PLERS : Plateform Logi
ielEmbarqu�e Re
on�gurable pour Satellites { appli
ation au satellite Corot. In Pro
. RenPar'2000,June 2000.[FPR98℄ B. Folliot, I. Piumarta and F. Ri

ardi. A dynami
ally-
on�gurable, multi-language exe-
ution platform. In Pro
. 1998 SIGOPS European Workshop, 1998.[HKM+98℄ M. Hi
ks, P. Kakkar, J. T. Moore, et al, PLAN: A Pa
ket Language for A
tive Net-works, International Conferen
e on Fun
tional Programming (ICFP), 1998.[KLM+97℄ G. Ki
zales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier and J.Irwin. Aspe
t-Oriented Programming. In Pro
. ECOOP'97, LNCS 1241, pp. 220{242, June1997.[LK97℄ C. Lopes and G. Ki
zales. D: A Language Framework for Distributed Programming. Te
h-ni
al Report SPL97-010 P9710047, Xerox Palo Alto Resear
h Center, February 1997.[MY93℄ S. Matsuoka and A. Yonezawa. Analysis of inheritan
e anomaly in obje
t-oriented
on-
urrent programming languages. Resear
h Dire
tions in Con
urrent Obje
t-Oriented Program-ming, pp. 107{150, MIT Press, 1993.[PW93℄ C. Pu and J. Walpole, A Study of Dynami
 Optimization Te
hniques: Lessons and Di-re
tions in Kernel Design, Te
hni
al Report OGI-CSE-93-007.[WGT98℄ D. J. Wetherall, J. V. Guttag and D. L. Tennenhouse, ANTS: A toolkit for building anddynami
ally deploying networks proto
ols, IEEE OPENARCH'98, San Fran
is
o, CA, April1998.[Yok92℄ Y. Yokote, The Apertos Re
e
tive Operating System: The Con
ept and Its Implementa-tion, OOPSLA 1992. Sony CSL Te
hni
al Report SCSL-TR-92-014.[RVM℄ http://www-sor.inria.fr/proje
ts/vvm/

54

